電能質量問題概述
隨著國民經濟的發展,科學技術的進步和生產過程的高度自動化,電網中各種非線性負荷及用戶不斷增長;各種復雜的、精密的,對電能質量敏感的用電設備越來越多。上述兩方面的矛盾越來越突出,用戶對電能質量的要求也更高,在這樣的環境下,探討電能質量領域的相關理論及其控制技術,分析我國電能質量管理和控制的發展趨勢,具有很強的觀實意義。
1衡量電能質量的主要指標
由于所處立場不同,關注或表征電能質量的角度不同,人們對電能質量的定義還未能達成完全的共識,但是對其主要技術指標都有較為一致的認識。
(1) 電壓偏差(voltage deviation):是電壓下跌(電壓跌落)和電壓上升(電壓隆起)的總稱。
(2) 頻率偏差(friquency deviation):對頻率質量的要求全網相同,不因用戶而異,各國對于該項偏差標準都有相關規定。
(3) 電壓三相不平衡(unbalance):表現為電壓的最大偏移與三相電壓的平均值超過規定的標準。
(4) 諧波和間諧波(harmonics & inter-hamonics):含有基波整數倍頻率的正弦電壓或電流稱為諧波。含有基波非整數倍頻率的正弦電壓或電流稱為間諧波,小于基波頻率的分數次諧波也屬于間諧波。
(5) 電壓波動和閃變(fluctuation & flicker):電壓波動是指在包絡線內的電壓的有規則變動,或是幅值通常不超出0.9~1.1倍電壓范圍的一系列電壓隨機變化。閃變則是指電壓波動對照明燈的視覺影響。
(6) 瞬變 用電系統 干擾設備的安全運行 "電壓和電流在瞬態下發生的變化,瞬時態是指瞬流持續的時間非常之短,它可以在數億分之一秒內完成從迸發到消失的過程。
(7)電表 電表轉速加快,瞬流會嚴重地影響感性電度表表盤的作用力矩和轉速,使表盤發生階躍式地轉快。其結果,它會導致電度表對一個系統總的用電量的過度計量,此種過度計量,最高幅度可達30%。
2電能質量問題的產生
2.1電能質量問題的定義和分類
電能質量問題是眾多單一類型電力系統干擾問題的總稱,其實質是電壓質量問題。電能質量問題按產生和持續時間可分為穩態電能質量問題和動態電能質量問題。
2.2電能質量問題產生原因分析
隨著電力系統規模的不斷擴大,電力系統電能質量問題的產生主要有以下幾個原因。
2.2.1電力系統元件存在的非線性問題
電力系統元件的非線性問題主要包括:發電機產生的諧波;變壓器產生的諧波;直流輸電產生的諧波;輸電線路(特別是超高壓輸電線路)對諧波的放大作用。此外,還有變電站并聯電容器補償裝置等因素對諧波的影響。其中,直流輸電是目前電力系統最大的諧波源。
2.2.2非線性負荷
在工業和生活用電負載中,非線性負載占很大比例,這是電力系統諧波問題的主要來源。電弧爐(包括交流電弧爐和直流電弧爐)是主要的非線性負載,它的諧波主要是由起弧的時延和電弧的嚴重非線性引起的。居民生活負荷中,熒光燈的伏安特性是嚴重非線性的,也會引起嚴重的諧波電流,其中3次諧波的含量最高。大功率整流或變頻裝置也會產生嚴重的諧波電流,對電網造成嚴重污染,同時也使功率因數降低。
2.2.3電力系統故障
電力系統運行的內外故障也會造成電能質量問題,如各種短路故障、自然現象災害、人為誤操作、電網故障時發電機及勵磁系統的工作狀態的改變、故障保護裝置中的電力電子設備的啟動等都將造成各種電能質量問題
電能質量分析方法
3.1時域仿真法
時域仿真方法在電能質量分析中的應用最為廣泛,其最主要的用途是利用各種時域仿真程序對電能質量問題中的各種暫態現象進行研究。目前較通用的時域仿真程序有EMTP、EMTDC、NETOMAC等系統暫態仿真程序和SPICE、PSPICE、SABER等電力電子仿真程序。
采用時域仿真計算的缺點是仿真步長的選取決定了可模仿的最大頻率范圍,因此必須事先知道暫態過程的頻率覆蓋范圍。此外,在模仿開關的開合過程時,還會引起數值振蕩。
3.2頻域分析法
頻域分析方法主要包括頻率掃描、諧波潮流計算和混合諧波潮流計算等,該方法多用于電能質量中諧波問題的分析。
頻率掃描和諧波潮流計算在反映非線性負載動態特性方面有一定局限性,因此混合諧波潮流計算法在近些年中發展起來。其優點是可詳細考慮非線性負載控制系統的作用,因此可精確描述其動態特性。缺點是計算量大,求解過程復雜。
3.3基于變換的方法
在電能質量分析領域中廣泛應用的基于變換的方法主要有Fourier變換、神經網絡、二次變換、小波變換和Prony分析等5種方法。
3.3.1Fourier變換
Fourier變換是電能質量分析領域中的基本方法,在實時系統中,通常采用短時Fourier變換方法(STFT)和快速Fourier變換方法(FFT)。
Fourier變換的優點是算法快速簡單。但其缺點也很多:(1)雖然能夠將信號的時域特征和頻域特征聯系起來觀察,但不能將二者有機地結合起來。(2)只能適應于確定性的平穩信號(如諧波),對時變非平穩信號難以充分描述。(3)STFT的離散形式沒有正交展開,難以實現高效算法;只適合于分析特征尺度大致相同的過程,不適合分析多尺度過程和突變過程。(4)FFT變換的時間信息利用不充分,任何信號沖突都會導致整個頻帶的頻譜散布;在不滿足前提條件時,會產生“旁瓣”和“頻譜泄露”現象。
3.3.2神經網絡法
神經網絡理論是巨量信息并行處理和大規模平行計算的基礎,它既是高度非線性動力學系統,又是自適應組織系統,可用來描述認知、決策及控制的智能行為。
神經網絡法的優點是:(1)可處理多輸入-多輸出系統,具有自學習、自適應等特點。(2)不必建立精確數學模型,只考慮輸入輸出關系即可。缺點是:(1)存在局部極小問題,會出現局部收斂,影響系統的控制精度;(2)理想的訓練樣本提取困難,影響網絡的訓練速度和訓練質量;(3)網絡結構不易優化。
3.3.3二次變換法
二次變換是一種基于能量角度來考慮的新的時域變換方法。該方法的基本原理是用時間和頻率的雙線性函數來表示信號的能量函數。
二次變換的優點是:可以準確地檢測到信號發生尖銳變化的時刻;精確測量基波和諧波分量的幅值。缺點是:無法準確地估計原始信號的諧波分量幅值;不具有時域分析功能。
3.3.4小波分析法
小波變換是新的多尺度分析數字技術,它通過對時間序列過程從低分辨率到高分辨率的分析,顯示過程變化的整體特征和局部變化行為。常用的小波基函數有:Daubechies小波、B小波、Morlet小波Meyer小波等。
小波變換的優點是:(1)具有時-頻局部化的特點,特別適合突變信號和不平穩信號分析。(2)可以對信號進行去噪、識別和數據壓縮、還原等。缺點是:(1)在實時系統中運算量較大,需要如DSP等高價格的高速芯片。(2)小波分析有“邊緣效應”,邊界數據處理會占用較多時間,并帶來一定誤差。
3.3.5Prony分析法
Prony分析衰減的思想類似于小波。在該方法中,信號總是被認為可以由一系列的衰減的正弦波構成,這些衰減正弦波類似于小波函數。所以Prony分析方法和小波一樣,可以做多尺度的信號分析。Prony分析的主要缺點是計算時間過長。